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Theoretical study of flow coupling mechanisms in two-layer Rayleigh-Be´nard convection
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Institute of Physics, University of Bayreuth, D-95440 Bayreuth, Germany
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Rayleigh-Bénard convection in a system of two superimposed immiscible fluids, heated from below, is
investigated theoretically. In a two-layer system, stationary convection is characterized by two distinct modes
of flow coupling, namely, thermal coupling and viscous coupling. We derive two coupled amplitude equations
in order to describe the nonlinear interaction of the viscous and the thermal coupling modes, whereby we
restrict our analysis to the two-dimensional case. By analyzing the amplitude equations for varying fluid
parameters, we make predictions concerning the stability of the involved coupling modes in the weakly
nonlinear regime.
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I. INTRODUCTION

The problem of convection in two superimposed horizo
tal layers of immiscible fluids, heated from below, has
tracted much attention in the past decades. Interest in
problem originally arose in the context of thermal convect
in the Earth’s mantle@1#. Seismic evidence exists for a dis
continuity at the depth of 670 km, which is nowadays attr
uted primarily to a phase change owing to the transition fr
a spinel to a perovskite crystal lattice of the silicate man
material. But the contribution of a chemical change at
670-km seismic discontinuity cannot easily be exclud
Later, work on double-layer convection was motivated
new dynamical phenomena, such as oscillatory convect
which cannot be observed in the case of single-layer con
tion. The large number of dimensionless parameters that
pear in the description of double-layer convection may h
discouraged some fluid dynamicists and physicists from
tering this area of research. On the other hand, the h
parameter space of the problem offers the opportunity
study a number of dynamical phenomena, such as pa
resonances, in a relatively simple setting that can be real
experimentally. Numerous laboratory realizations of doub
layer convection have been performed in the past years a
considerable amount of experimental data have been
lished. But the agreement between the theoretical predict
and laboratory measurements is not satisfactory in m
cases. In part, this is due to the fact that immiscible flu
represent an idealization and that the physical properties
least one of the pairs of fluids are often not well known. T
number of suitable pairs of nearly immiscible fluids is n
very large and they span only a limited region in the para
eter space. Since, in reality, always some amount of mix
or entrainment happens at the interface between two liqu
the properties of a two-layer convection experiment tend
change in time and there is a limited reproducibility of t
results. Moreover, contaminants accumulate at the interf
the properties of which cannot be described solely by
interfacial tension. Interface elasticity and interface viscos
have been introduced@2–6# to describe the deviations of th
dynamical properties from that of an uncontaminated in
face. We shall return to this point at the end of this pap
The motivation for the weakly nonlinear analysis of this p
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per comes from the observation that the form of convect
often changes at supercritical Rayleigh numbers, which
still sufficiently close to the critical value, such that a weak
nonlinear analysis may be expected to be applicable.

II. BASIC EQUATIONS

We consider two immiscible Newtonian fluids contain
in the space between two parallel perfectly heat conduc
boundaries of infinite horizontal extension. The lower boun
ary is kept on a constant temperatureT2 whereasT1 is the
temperature of the upper boundary. We use a set of Carte
coordinatesx,y,z with corresponding unit vectorsi,j ,k as
indicated in Fig. 1.k is the unit vector in the vertical direc
tion opposite to the acceleration of gravityg52gk. Let d be
the thickness,% the density,n the kinematic viscosity,k the
heat diffusivity,l the thermal conductivity, andg the ther-
mal expansion coefficient of the lower fluid. We denote t
corresponding properties of the upper fluid with an aster
It is reasonable to introduce the following ratios between
properties of the upper and the lower layers:
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FIG. 1. Geometrical configuration of the two-layer system.
©2003 The American Physical Society05-1
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In the basic static state of pure conduction, the interfac
flat and located atz50. The temperature at the interface
the basic state is given by

T05
l* dT11l d* T2

l* d1ld*
. ~1!

We describe both layers within the Boussinesq approxim
tion, i.e., all parameters are independent of the tempera
except for the densities and the interface tension. The t
perature dependence of the density,

r5%„12g~T2T0!…, ~2!

is taken into account only in the gravity term. Usingd as
length scale,d2/k as time scale, and (T22T0) as scale of the
temperature, the basic equations describing the dynamic
the lower fluid, i.e., the Navier-Stokes equation, the equa
of heat conduction and the equation of continuity can
written in the following dimensionless form:

1

P
~] t1v•“ !v52“p1Ruk1“

2v , ~3a!

~] t1v•“ !u5v•k1“

2u, ~3b!

“•v50, ~3c!

wherev is the velocity vector,u andp denote the deviations
of the temperature and of the pressure, respectively, from
basic static state. Rayleigh numberR and Prandtl numberP
are defined by

R5
gg~T22T0!d3

nk
, P5

n

k
. ~4!

Using the same scales, the corresponding equations fo
upper fluid read as follows:

1

P
~] t1v* •“ !v* 52

1

%0
“p* 1g0Ru* k1n0“

2v* ,

~5a!

~] t1v* •“ !u* 5
1

l0
v* •k1k0“

2u* , ~5b!

¹•v* 50. ~5c!

For simplicity, we assume that the motion occurs in the fo
of two-dimensional rolls. Therefore, we can introduce tw
streamfunctionsc5c(x,z) andc* 5c* (x,z) in order to ex-
press the velocities as follows:

v5“3c j5~2]zc,0,]xc!,

v* 5“3c* j5~2]zc* ,0,]xc* !. ~6!

By taking the curl of Eqs.~3a! and~5a! and multiplying them
with j , we obtain the following four equations:
01630
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1

P
] t“

2c5
1

P
@c,“2c#, ~7a!

]xc1“

2u2] tu5@c,u#, ~7b!

n0“
4c* 1g0R]xu* 2

1

P
] t“

2c* 5
1

P
@c* ,“2c* #, ~7c!

1

l0
]xc* 1k0“

2u* 2] tu* 5@c* ,u* #, ~7d!

where @ .,.# is the Poisson operator, i.e.,@ f 1 , f 2#5]xf 1]zf 2
2]xf 2]zf 1. Finally, we rewrite Eqs.~7a!–~7d! for state vec-
tor y5(c,u,c* ,u* ) in the form

~L1RM1] tT!y5N~y,y!. ~8!

The structure of linear operatorsL ,M ,T and of the nonlinear
operatorN can easily be obtained from Eqs.~7a!–~7d!.

III. BOUNDARY AND INTERFACE CONDITIONS

We use no-slip Eq.~9a! as well as stress-free bounda
conditions~9b!, together with fixed temperatures at the ou
boundaries of the double layer, which are located atz521
andz5d0:

]xc5]zc5u50 at z521,

]xc* 5]zc* 5u* 50 at z5d0 , ~9a!

]xc5]z
2c5u50 at z521,

]xc* 5]z
2c* 5u* 50 at z5d0 . ~9b!

Distortions of the interface from the equilibrium position a
given by F(x,z,t)5z2z(x,t)50. The substantive deriva
tive of F yields the kinematic condition] tz5]xc(z)
1]zc(z)]xz for the material interface. The domain occupie
by each fluid isa priori unknown andz must be determined
as part of the solution. While the linear problem withzÞ0
can be solved easily@7#, the situation becomes rather diffi
cult in the nonlinear case. For many combinations of imm
cible fluids, used within laboratory experiments, the interfa
tension and the density difference between the fluids prev
a significant distortion of the interface. Therefore, we w
assume a flat interface between the two liquids. The cont
ity of the velocity, the temperature, and the heat transp
together withz50, require conditions

]xc5]xc*

5]zc2]zc* 5u2u* 5l0]zu* 2]zu50 at z50.

~10!

While the balance of the normal stresses at the interface d
not enter the problem in the casez50, the balance of the
tangential stresses can be written as

]z
2c2n0%0]z

2c* 5M]xu1N]x
2]zc. ~11!
5-2
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Marangoni numberM and interface viscosity numberN are
defined by

M52
]s

]T

~T22T0!d

hk
, N5

h i

hd
, ~12!

whereh i is the interface viscosity@3,5,6#. We assume tha
temperature derivative]s/]T of interfacial tensions is con-
stant. Since both the Rayleigh number and the Marang
number depend on temperature difference (T22T0), typi-
cally both parameters are varied simultaneously in exp
ments. Therefore, we use the dimensionless parameter

cª
M

R
52

]s

]T

1

%0ggd2
~13!

instead of the Marangoni number. Forucu@1 the Marangoni
effect will be dominant, while forucu!1 the convection will
be driven by buoyancy.

IV. LINEAR ANALYSIS

The linear stability of the double-layer system has be
already investigated by numerous authors@7–10#. Neverthe-
less, we will make some technical remarks concerning
linear problem, since it is equivalent to the first-order pro
lem of the forthcoming nonlinear analysis. The lineariz
version of Eq.~8!

~L1R0M1] tT!y050 ~14!

can be solved with ansatz

y0~x,z,t !5„u~z!,q~z!,u* ~z!,q* ~z!…eiax1st. ~15!

Therein,a denotes the wave number ands5s r2 iv0 is the
complex growth rate. In general, thez-depending functions
are complex. Since we are interested in the case of marg
stability, i.e., in the neutral curves, we puts r50. Inserting
Eq. ~15! into Eq. ~14!, we find

S a22
iv0

P Da2u1S iv0

P
22a2Du91u+1 iaR0q50,

~16a!

iau1~ iv02a2!q1q950, ~16b!

S n0a22
iv0

P Da2u* 1S iv0

P
2n02a2Du* 9n0u* +

1g0iaR0q* 50, ~16c!

1

l0
iau* 1~ iv02k0a2!q* 1k0q* 950. ~16d!

These equations, together with the six boundary conditi
of Eq. ~9! and the six interface conditions~10! and~11!, can
be solved by the use of a shooting method, as describe
Ref. @7#. The interface conditions provide a set of six line
homogeneous equations whose solvability condition yie
01630
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an infinite number of neutral curvesR0
(n)(a) and dispersion

relationsv0
(n)(a), with nPN. If we heat from below, every

neutral curve is normally characterized by a critical Rayle
number Rc

(n)5mina$R0
(n)(a)%5R0

(n)(ac
(n)).0, a critical wave

numberac
(n) , and a critical frequencyvc

(n)5v0
(n)(ac

(n)). We
number the neutral curves consecutively, such thatRc

(n)

,Rc
(n11) holds for nPN. In the following, we will restrict

our attention to the first two linear unstable modes, which
will denote as theA and B modes, respectively. Of specia
interest are the critical values (Rc

(1) ,ac
(1) ,vc

(1)) of the A
mode, of course, since they describe the onset of convec
In the theory of Rayleigh-Be´nard convection, the neutra
curves forn.1 are typically of minor interest because th
amplitude of convection becomes quite high forR>Rc

(2) .
This is true, e.g., for a single layer with stress-free bou
aries, whereR0

(n)(a)5(a21n2p2)3/a2 holds and where
Rc

(2)5163Rc
(1) . In contrast to single-layer convection, th

neutral curvesR0
(1)(a) andR0

(2)(a) of double-layer convec-
tion usually correspond to different types of coupling a
R0

(2)2R0
(1) can become relatively small, depending on t

system parameters@11#. Therefore, the interaction betwee
theA andB modes may become important for the convecti
in the weakly nonlinear regime. In particular, this interacti
can lead to a change of the coupling mechanism, which
connected with a characteristic change of the flow patte
Our basic idea is to describe the competition between thA
andB modes with the help of two coupled amplitude equ
tions, which we will derive in the following section. Fo
these purposes, we introduce the following notation:

acªac
(1) , RcªR0

a
ªR0

(1)~ac!, R0
b
ªR0

(2)~ac!.
~17!

Please note that, in general,R0
bÞRc

(2) holds.

V. NONLINEAR ANALYSIS

We perform a weakly nonlinear analysis in the neighb
hood of the onset of convection (ac ,Rc). For simplicity, we
shall restrict the analysis to the case of a monotonous o
of A andB modes, i.e., we assumevc

(1)5vc
(2)50. In defin-

ing a scalar product

^y1 ,y2&ª
a

pE21

0 E
0

2p/a

c̄1c2dxdz

1
a

pE0

d0E
0

2p/a

c̄1* c2* dxdz

1
a

pE21

0 E
0

2p/a

ū1u2dxdz

1
a

pE0

d0E
0

2p/a

u1*̄ u2* dxdz, ~18!

we indicate the complex conjugate by a bar. LetL
1R0M )† be the adjoint operator to (L1R0M ) and lety0

† be
a solution of

~L1R0M !†y0
†50 ~19!
5-3
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Then, amplitudee of convection can be defined by

eª^y0
† ,y& ~20!

and the expansion in powers ofe can be written in the form

R5R01eR11e2R21•••, ~21a!

y5e~y01ey11e2y21••• !. ~21b!

For time-dependent processes we shall introduce a slow
Tªe2t such that] t is replaced bye2]T . Since we fix the
Marangoni number byM5cR, there is no need to write a
separate expansion forM. By inserting expansion~21b! into
definition ~20! we obtain the set of conditions

^y0
† ,yn&5d0n , n50,1, . . . . ~22!

Insertion of expressions~21a! and ~21b! into Eq. ~8! yields
the linear Eq.~14! in lowest order. We write the solutions fo
the A andB modes in the form

y0
a~x,z!5

1

2
A0~T!„@ua~z!,qa~z!,ua* ~z!,qa* ~z!#eiax1c.c.… ,

~23a!

y0
b~x,z!5

1

2
B0~T!„@ub~z!,qb~z!,ub* ~z!,qb* ~z!#eiax1c.c.…,

~23b!

where c.c. indicates the complex conjugate of the first te
in the respective brackets. We have introduced complex
plitudes A0 and B0 which may depend on slow timeT in
addition to their dependence on the external parameter
the problem such asR. Wave numbera will usually be fixed
at its critical valuea5ac . Sum

y05y0
a1y0

b ~24!

of the two modes is the starting point of the followin
weakly nonlinear analysis. Of course, since Rayleigh nu
bersR0

a andR0
b , for which y0

a andy0
b solve the linear equa

tions, are not equal in general,y0 solves the linear problem
only approximately, to the extent that the differenceR0

b

2R0
a is small such that it can be taken into account in

higher order of the problem. Since the conditions~22! do not
fix the amplitude ofy0, we use the normalization

E
21

0

uuau2dz1E
0

d0
uua* u2dz5E

21

0

uubu2dz1E
0

d0
uub* u2dz51.

~25!

In order e2 of Eq. ~8!, we obtain the linear inhomogeneou
equation

~L1R0M !y152R1My01N~y0 ,y0! ~26!

which requires the solvability condition

R15
^y0

† ,N~y0 ,y0!&

^y0
† ,My0&

~27!
01630
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since its homogeneous part has a nonvanishing solutio
can readily be checked that condition~27! is satisfied with
R150 and solutiony1 of Eq. ~26! can thus be written in the
form

c1~x,z!5
1

2
„@A0

2ua1~z!1A0B0uab1~z!1B0
2ub1~z!#ei2ax

1uA0u2ua2~z!1A0B̄0uab2~z!1uB0u2ub2~z!

1c.c.…, ~28!

u1~x,z!5
1

2
„@A0

2qa1~z!1A0B0qab1~z!1B0
2qb1~z!#ei2ax

1uA0u2qa2~z!1A0B̄0qab2~z!1uB0u2qb2~z!

1c.c.…, ~29!

with analogous expressions valid in the upper layer wh
differs only by an asterisk at thez-depending functions.
It is evident that the orthogonality condition~22! is
satisfied. For the determination of the functio
ua1(z),ua1* (z),uab1(z), . . . the shooting method has bee
employed and value

R0ª
1

2
~R0

a1R0
b! ~30!

has been used. Because of the closeness ofR0
a andR0

b , the
results are changed only negligibly if, for instance,R05R0

a is
assumed. It can easily be demonstrated that functi
ua2 ,ua2* ,ub2 ,ub2* vanish identically but the same does n
hold for uab2 anduab2* . In ordere3, we obtain equation

~L1R0M !y25]TTy02R2My01N~y0 ,y1!1N~y1 ,y0!
~31!

which requires the solvability condition

R2^y0
† ,My0&5^y0

† ,]TTy0&1^y0
† ,N~y0 ,y1!&

1^y0
† ,N~y1 ,y0!&. ~32!

Since y0
a† as well asy0

b† can be used in place ofy0
† , two

coupled nonlinear amplitude equations are obtained. By
agonalizing the contributions from theT-operator term, the
two equations can be written as differential equatio
]A0 /]T5 . . . and]B0 /]T5 . . . . In order to gain a direct
connection with the original Eqs.~8!, we now eliminatee by
writing

AªeA0 , BªeB0 , R25
R2R0

e2
, e2

]

]T
5

]

]t

whereby, we neglect contributions of higher order ine. We
thus obtain the final form of the amplitude equations

] tA5~a1r a1a2r b!A1~a3r a1a4r b!B1a5AuAu21a6BuAu2

1a7B2Ā1a8A2B̄1a9AuBu21a10BuBu2, ~33a!
5-4
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] tB5~b1r a1b2r b!A1~b3r a1b4r b!B1b5AuAu21b6BuAu2

1b7B2Ā1b8A2B̄1b9AuBu21b10BuBu2, ~33b!

where definitionsr aª(R2R0
a) and r bª(R2R0

b) have been
used. All coefficients in Eqs.~33! are real.

VI. RESULTS

Since it is not feasible to investigate the entire parame
space with the system of amplitude Eqs.~33!, we shall re-
strict the attention to a few typical special cases including
case of an experiment@7#. In the following examplesM
5N50 is assumed. Since a supercritical bifurcation of theA
mode atR5Rc was always found, the properties of theA
mode will persist for a certain intervalR2Rc.0. We are
interested in the case when the interaction between the
fluid layers changes discontinuously through the nonlin
coupling with theB mode. In the following, we analyze suc
a situation for stress-free as well as for rigid boundari
When the Rayleigh numbers in the two layers are appro
mately equal (R'R* ), buoyancy-driven convection will oc
cur in both the layers forR.Rc . In this case we can distin
guish between viscous~mechanical! coupling and therma
coupling. Viscous coupling is characterized by an oppo
sense of circulation in the layers. Accordingly, the tangen
velocity on both sides of the interface has the same sign
the stronger circulation may support the weaker one on
other side. In the special case when no stress is exerted
one layer onto the other, stress-free conditions are obtai
Because of the opposite sense of circulation, the tempera
perturbation also has the opposite sign in both the layer
the case of viscous coupling. In the case of thermal coup
the temperature perturbation has the same sign and it is
less constrained. The corresponding buoyancy force dr
convection with the same sense of circulation in both
layers. When the viscosities of the two layers are of the sa
order, viscous coupling is preferred at the onset of conv
tion. Otherwise, the effects of heat conduction lead to th
mal coupling. It is possible for the system to oscillate b
tween viscous and thermal coupling. This type of tim
dependent convection is called oscillatory coupling@7#.

A. Case 1:d0Äk0Äl0Ä%0Äh0Äg0Ä1

In this case the material properties of both the layers
the same and the linear analysis can be carried out easily@7#.
The neutral curves for viscous and thermal coupling
shown in Fig. 2 for rigid as well as for stress-free boundar
The corresponding functionsu(z),q(z) for stress-free
boundaries are displayed in Fig. 3. Since all quantities p
ted are dimensionless, no units are needed. This is true fo
figures in this article. Both theA as well as theB mode
satisfy the six boundary conditions~9a! and ~9b!, respec-
tively, and the six interface conditions~10! and ~11!. The A
mode exhibits antisymmetric functionsu(z),q(z) with re-
spect toz50, while these functions are symmetric for theB
mode. This clear distinction by symmetry~and orthogonal-
ity! betweenA andB modes disappears as one moves aw
from point d05k05l05%05h05g051 in the parameter
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space. ButA and B modes still resemble the ideal case
Fig. 3 as long as the properties of the two layers do
become too different. TheA mode is an example for pur
viscous coupling since we findu95u* 950 andq5q* 50
for the A mode atz50, so that the interface becomes
stress-free isotherm. This result is independent of wave n
bera and therefore, the neutral curveR0

a(a) for theA mode
in the case of rigid boundaries corresponds to the neu
curve in a Rayleigh-Be´nard layer with one rigid and one
stress-free boundary. We thus haveRc5R0

a51101 with ac

52.682. This result is well known~Pellew and Southwell,
Ref. @12#! and has been confirmed by Rasenat, Busse,
Rehberg@7#. The B mode is an example for pure therm
coupling sinceu85u* 850 and q85q* 850 holds at z
50, so that the interface becomes rigid~vanishing velocity!
and thermally insulating. Therefore, the neutral curve for
B mode in the case of rigid boundaries corresponds to
neutral curve of a Rayleigh-Be´nard layer with a rigid and
thermally insulating boundary on one side and a rigid, is
thermal boundary on the other side. We findR0

b51299 in this
case fora52.682. Similarly, the neutral curve for stress-fre
boundaries can be obtained readily;Rc5R0

a527p4/4
5657.5 withac5p/A2 for theA mode andR0

b5816.7 for
the B mode. The bifurcation diagram obtained from amp

FIG. 2. Neutral curves for viscous~solid lines! and thermal
~dashed lines! coupling in cased05k05l05%05h05g051.
Thick ~thin! lines correspond to rigid~stress-free! boundaries.

FIG. 3. Functionsu(z) ~solid! and q(z) ~dashed! for the A
~thick! and B modes~thin! in cased05k05l05%05h05g051,
with stress-free boundaries corresponding toac52.221,R0

a

5657.5,R0
b5816.7.
5-5
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tude Eqs.~33a! and ~33b! in the case of stress-free boun
aries withP51 is shown in Fig. 4. In our bifurcation dia
grams, thick lines correspond touAu, thin lines correspond to
traveling waves, and lines of medium thickness corresp
to uBu. Solid lines indicate stable solutions while dash
lines indicate unstable solutions. A single branch of sta
containing bothA and B components is represented by tw
curves, one for each component. AtR5808.2 a bifurcation
occurs in which a traveling wave branch~two thin lines, one
for uAu and one foruBu) emerges from theA mode. The latter
becomes unstable while the property of stability is taken o
by the traveling waves. The frequency of the traveling wa
increases from zero at the bifurcation point and decrea
back to zero as the traveling wave solution meets the B m
in a second bifurcation atR5988.7. While the two layers
convect with viscous coupling at low supercritical Raylei
numbers, the traveling waves provide a transition from v
cous to thermal coupling, represented by the stableB mode
for R.988.7. In addition, there is a mixed mode soluti
which bifurcates atR5Rm5869.6 from theB mode. The
heat transport carried by the various types of convectio
plotted in Fig. 5, which demonstrates that the solution w
the maximum Nusselt number is not always the stable s
tion.

When no-slip, instead of stress-free, boundaries are u
the forms of theA and theB modes are changed very little

FIG. 4. Bifurcations in the case of stress-free boundary con
tions. Diagram ford05k05l05%05h05g051.

FIG. 5. Nusselt numbers as function of the Rayleigh number
the bifurcating solutions in caseP5d05k05l05%05h05g0

51 with stress-free boundary conditions.
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except foru(z) close to the boundaries. However, the tra
sition from viscous to thermal coupling no longer occurs
P51. Since the Prandtl number enters only the nonlin
part of the problem and since it measures the ratio betw
the strength of viscous and thermal diffusion, a lowering
the Prandtl number is likely to promote thermal couplin
This expectation is indeed fulfilled, as shown in Fig. 6. Ra
leigh numberRi

a , at which theA mode becomes unstable ha
been plotted here as a function of the Prandtl number. Th
exists an upper limit ofP for which a finite value ofRi

a can
be obtained. This upper limitPi

a assumes valuePi
a51.660

for stress-free boundaries while for no-slip boundaries,Pi
a

50.823 is found. From the value ofR0
b , also shown in the

figure, one can infer that forP50.3 approximately the sam
bifurcation diagram as Fig. 4 can be obtained for rig
boundaries, as was obtained for stress-free boundarie
caseP51.

B. Case 2:d0Ä%0Äg0Ä1, h0Ä25, k0Äl0Ä0.2

We now consider a case characterized by thermal c
pling at the onset of convection. The neutral curves for thA
as well as theB mode are identical with those in case 1. Th
is true for rigid as well as for stress-free boundaries. Acco
ingly, the Rayleigh numbers in both layers are equal, i.e.R
5R* , and the values ofac , R0

a , andR0
b are the same as in

case 1. This property is not quite obvious and is stated h
as an empirical fact. It will be the subject of a proof given
a future paper. We first analyze the case of rigid boundar
Since the upper layer has a much higher viscosity an
lower heat conductivity than the lower layer, the veloc
field is much stronger in the lower layer while the tempe
ture perturbation is amplified in the upper layer, as can
seen from Fig. 7. BothA and B modes represent therma
coupling since viscous coupling is minimized owing to t
high viscosity ratioh0525. In fact, the lower boundary o
the upper layer acts essentially like a stress-free interfa
while the high temperature gradient caused in the upper la
by the small value 0.2 ofk0 andl0 exerts a strong influence
on the lower layer. The latter effect would disappear fork0
5l051 in which caseR* !R is obtained with viscous cou

i-

r

FIG. 6. The Rayleigh number at which theA mode becomes
unstable as function of the Prandtl number ford05k05l05%0

5h05g051 with rigid ~solid line! or stress-free~dashed line!
boundaries. The thin lines indicate the corresponding value ofR0

b .
5-6
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pling as a consequence. Similarly,h051 with k05l050.2
would lead toR* @R with viscous coupling at the onset o
convection. TheA solution, bifurcating at the onset of con
vection, is of mixed type, with the amplitude of theA mode
always far exceeding that of theB mode, i.e.,uAu@uBu.0.
Therefore we have multiplied the amplitude of theB mode
by factor 10 in Fig. 8. While theA solution is always stable
theB solution bifurcating atR5R0

b is always unstable, which
is understandable on the basis of its much lower Nus
number, as shown in Fig. 9. These properties are not affe
by the onset, atR5Rm51455, of two other solutions o
mixed type through a saddle node bifurcation. Since th
solutions are also unstable they are not of physical inter
Because of the weak mechanical coupling no signific
changes can be expected for increasing Rayleigh num
within the realm of the amplitude equation description. T
property persists when the rigid boundaries are replaced
stress-free boundaries. The effect of the thermal couplin
so strong that a change of the conditions at the outer bou
aries will not affect the dynamics of the system in any qua
tative way.

C. Case 3: Ethylene glycol-oil system, no-slip boundaries

We now consider an experiment performed by Rase
Busse, and Rehberg@7#. Two channels with dimensions 9

FIG. 7. Functionsu(z) ~solid! and q(z) ~dashed! for the A
~thick! and B ~thin! modes in caseP5d05%05g051,h0

525, k05l050.2 with no-slip boundaries corresponding toac

52.682,R0
a51101, andR0

b51299.

FIG. 8. Bifurcations in the case of no-slip boundary conditio
Diagram forP5d05%05g051, h0525, andk05l050.2.
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320312 mm3 and 14038312 mm3 have been used with
copper plates as boundaries at top and bottom and g
plates as vertical boundaries. Convection rolls tend to or
themselves with the axis perpendicular to the long side of
channel. In the case of the 20-mm wide channel the crit
Rayleigh number for onset of convection does not dif
much from the value for an infinitely extended layer, but
the case of the 8-mm wide channel the critical Rayle
number is increased significantly. Among the various com
nations of liquids used by Rasenat, Busse, and Rehberg@7#
we shall consider here only the system ethylene glycol
According to the data given in Ref.@7# we find the following
values for the parameters of our theory~ethylene glycol rep-
resents the lower fluid layer!:

P5187, P* 5286,
R*

R
51.886, d051.0,

k050.966,

l050.6, %050.811, h051.196, n051.475,

g051.613.

No data are available for the interfacial tension and its te
perature dependence. For simplicity we start with assum
tion c50. Because ofR* 51.886R convection is first seen
in the upper layer. The neutral curves forA andB modes are
shown in Fig. 10. According to Fig. 11 theA mode (B mode!
corresponds more or less to viscous~thermal! coupling.
Critical wave number isac52.673, corresponding toR0

a

5632.9, whileR0
b51199. These values correspond toDTc

52.207 K andDT0
b54.181 K in the experimental configu

ration. The former value is in good agreement with observ
onset of convection in the upper layer atDTc52.160.2 K in
the wider channel. Convection can first be observed in
lower layer atDT52.760.2 K at which point thermal cou-
pling is found. In the narrow channel a transition from vi
cous coupling~at DT54.1 K) to thermal coupling~for DT
>5.3 K) could actually be observed, connected with
change to a larger wavelength~from 13.2 mm to 14.5 mm!.
The latter value agrees quite well with minimum wave nu
ber ac

b52.577~corresponding tolc
b514.6 mm) of the neu-

tral curve for theB mode. Since an increase of the wav
.

FIG. 9. Nusselt numbers as function of the Rayleigh number
the bifurcating solutions in caseP5d05%05g051, h0525, and
k05l050.2 with no-slip boundary conditions.
5-7
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length was also observed in the wide cell atDT'3 K, the
authors of Ref.@7# conclude that the transition from viscou
to thermal coupling occurs in this case as well, even tho
convection in the lower layer was too weak to be obser
for DT,2.7 K.

In contrast to the linear aspects of the theory, not e
qualitative agreement between predictions and observati
with respect to nonlinear properties, could be found. T
bifurcation diagram, based on the amplitude Eqs.~33! and
shown in Fig. 12, indicates that only theA mode correspond
ing to viscous coupling is stable. A transition from viscous
thermal coupling is more likely at lower Prandtl numbe
But in the present case withc50, this transition occurs only
for P,Pi

a50.624. Another attempt to resolve the discre
ancy through consideration of casescÞ0 has also not been
successful either. Clearly, the Marangoni number does
vanish in the experiment as assumed so far. Asc increases
from zero the neutral curves ofA and B modes approach
each other, as shown in Fig. 13, such that atc50.130 con-
vection sets in with oscillatory coupling~OC!. This property
is due to the fact that the interfacial tension and motion at
interface have the same direction in the case of theB mode,
but are opposite for theA mode. In the case of negativec the
distance between the neutral curves ofA and B modes in-

FIG. 10. Neutral curves for the ethylene glycol-oil system w
rigid boundaries. The solid~dashed! line corresponds to viscou
~thermal! coupling.

FIG. 11. Functionsu(z) ~solid! and q(z) ~dashed! of the A
~thick! andB ~thin! modes for the ethylene glycol-oil double laye
with rigid boundaries corresponding toac52.673,R0

a5632.9, and
R0

b51199.
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creases while the distance between the neutral curvesB
andC modes~third linearly unstable mode! decreases until a
c520.517 a new mode with oscillatory coupling replac
theB mode as second linearly unstable mode. The nonlin
analysis based on Eqs.~33! has been carried out for differen
values ofcP@20.517,0.130#, but the bifurcation diagrams
do not show any significantly better agreement with the
perimental findings, than for casec50.

Even when depth ratiod0 was decreased tod050.853 in
order to achieve a state withR5R* , which is expected to
favor thermal coupling, no significant change with respec
cased051 was obtained. It is unlikely that the finite aspe
ratios of the experimental configurations are responsible
the discrepancy, especially since the linear theory agr
quite well with the observations of convection in the wid
channel. The additional viscous dissipation induced by
sidewall is likely to increase rather than decrease the ef
tive Prandtl number. We are thus led to consider other ph
cal effects not usually taken into account in theoretical tre
ments of the double-layer convection problem. The forem
candidate for such an effect is impurities on the interfa
which are known to exert a strong influence on the dyna
cal properties of the interface@3,5,6#.

In order to study the influence of the interface viscos
numberN, bifurcation diagrams have been calculated for d
ferent values ofN. As N is increased from zero, theA mode
changes its coupling property continuously from visco

FIG. 12. Bifurcation diagram for the ethylene glycol-oil doub
layer with rigid boundaries.

FIG. 13. Rc of the first three linearly unstable modes as functi
of parameterc for the ethylene glycol-oil double layer with rigid
boundary conditions.
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THEORETICAL STUDY OF FLOW COUPLING . . . PHYSICAL REVIEW E68, 016305 ~2003!
coupling towards thermal coupling. TheB mode exhibits the
opposite behavior in that it changes from thermal to visc
coupling. Already atN52 temperature functionq(z) of the
A mode no longer changes sign throughout the double la
21,z,1, as is characteristic for thermal coupling, a
though the velocity field still retains some resemblance w
viscous coupling through the opposite sense of circulation
both side of the interface. AtN55 this feature has also dis
appeared and theA mode is thermally coupled entirely, whil
the B mode is completely viscously coupled. The mixedA
solution which forN52 still represents the only stable sol
tion, becomes unstable beyondR.2.72R0

a when N is in-
creased to 5. In Fig. 14 functionsu(z) andq(z) are shown
for A and B modes for caseN510. At this point R0

a

5778.5 and R0
b51427 are found, corresponding toac

52.746. As is evident from the bifurcation diagram show
in Fig. 15, theA mode now again is the only stable mod
This property does not change with a further increase oN,
not even in the limit caseN5`, which corresponds to con
dition vW 50W at the interface and which, thus, can be inves
gated easily.

The results obtained for finite values ofN are in qualita-
tive agreement with the observations of Rasenat, Busse,
Rehberg@7# except at smallN and for an interval aroundN
55. We thus conclude that a transition from viscous to th
mal coupling did not occur in the wide channel experime
of Rasenat, Busse, and Rehberg@7#. Instead, it appears to b

FIG. 14. The functionsu(z) ~solid! andq(z) ~dashed! of the A
~thick! andB ~thin! modes for the ethylene glycol-oil double laye
with N510 and rigid boundaries corresponding toac52.746, R0

a

5778.5, andR0
b51427.
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most likely that convection in the two layers was therma
coupled already at onset, as is suggested by the effects o
interface viscosity and by the absence of any noticeable
tion in the lower layer forDT,2.7 K. The concept of the
interface viscosity may not be the most physically realis
one. But other more realistic descriptions of the effects
impurities are likely to lead to similar results.

VII. CONCLUDING REMARKS

Double-layer convection offers a large variety of sc
narios for the nonlinear dynamics of coupled systems, wh
have only partly been explored in this paper. A major dif
culty for the quantitative comparisons between theoret
predictions and experimental measurements is the
played by processes at the interface between the fluid
detailed exploration of the dynamical effects of impurities
the interface is desirable. The quantitative measurement
the changes induced by the intentional introduction of imp
rities at the interface could be helpful in this respect. T
analysis of this paper has been focused on the case w
convection rolls assume the same wavelength in both lay
But interesting interaction can also be expected when
heights of the layers differ significantly such that waveleng
ratios of 1:2 or others can be expected. The 1:2 resona
has been considered by Proctor and Jones@13# and experi-
mental realizations of such a system will be of much intere
Similarly, the exploration of the nonlinear properties of o
cillatory types of double-layer convection deserves more
tention than could be given in the present paper.

FIG. 15. Bifurcation diagram for the ethylene glycol-oil doub
layer with N510 and rigid boundaries.
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