PHYSICAL REVIEW E 68, 016305 (2003
Theoretical study of flow coupling mechanisms in two-layer Rayleigh-Beard convection
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Rayleigh-Beard convection in a system of two superimposed immiscible fluids, heated from below, is
investigated theoretically. In a two-layer system, stationary convection is characterized by two distinct modes
of flow coupling, namely, thermal coupling and viscous coupling. We derive two coupled amplitude equations
in order to describe the nonlinear interaction of the viscous and the thermal coupling modes, whereby we
restrict our analysis to the two-dimensional case. By analyzing the amplitude equations for varying fluid
parameters, we make predictions concerning the stability of the involved coupling modes in the weakly
nonlinear regime.
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[. INTRODUCTION per comes from the observation that the form of convection
often changes at supercritical Rayleigh numbers, which are
The problem of convection in two superimposed horizon-still sufficiently close to the critical value, such that a weakly
tal layers of immiscible fluids, heated from below, has at-nonlinear analysis may be expected to be applicable.
tracted much attention in the past decades. Interest in this
problem originally arose in the context of thermal convection
in the Earth’s mantl¢1]. Seismic evidence exists for a dis- Il. BASIC EQUATIONS

continuity at the depth of 670 km, which is nowadays attrib- e consider two immiscible Newtonian fluids contained
uted primarily to a phase change owing to the transition fromn the space between two parallel perfectly heat conducting
a spinel to a perovskite crystal lattice of the silicate mantleyoundaries of infinite horizontal extension. The lower bound-
material. But the Contribution Of a Chemical Change at th%ry iS kept on a constant temperatl]f'g WhereasTl is the
670-km seismic discontinuity cannot easily be excludediemperature of the upper boundary. We use a set of Cartesian
Later, Work_on double-layer convection was motivated _bYCoordinatesx,y,z with corresponding unit vectorsj,k as
new dynamical phenomena, such as oscillatory convectionpgicated in Fig. 1k is the unit vector in the vertical direc-
v_vh|ch cannot be observed in the case of single-layer convegigp, opposite to the acceleration of gravigy: — gk. Letd be
tion. The large number of dimensionless parameters that agne thicknesse the densityy the kinematic viscosityx the
pear in the description of double-layer convection may havg,gat diffusivity, A the thermal conductivity, ang the ther-
discouraged some fluid dynamicists and physicists from eng, 5| expansion coefficient of the lower fluid. We denote the
tering this area of research. On the other hand, the hugg,rresponding properties of the upper fluid with an asterisk.
parameter space of the problem offers the opportunity G js reasonable to introduce the following ratios between the

study a number of dynamical phenomena, such as patterﬂoperties of the upper and the lower layers:
resonances, in a relatively simple setting that can be realized

experimentally. Numerous laboratory realizations of double-

layer convection have been performed in the past years and a d* o* v*

considerable amount of experimental data have been pub- dO:F' 90:?' o=
lished. But the agreement between the theoretical predictions

and laboratory measurements is not satisfactory in most

cases. In part, this is due to the fact that immiscible fluids K* A* v*

represent an idealization and that the physical properties of at Ko== s )\OZT' Yo= -
least one of the pairs of fluids are often not well known. The

number of suitable pairs of nearly immiscible fluids is not

very large and they span only a limited region in the param- zZ /y
eter space. Since, in reality, always some amount of mixing
or entrainment happens at the interface between two liquids,
the properties of a two-layer convection experiment tend to
change in time and there is a limited reproducibility of the & T,
results. Moreover, contaminants accumulate at the interface,
the properties of which cannot be described solely by the X
interfacial tension. Interface elasticity and interface viscosity d
have been introducd@-6] to describe the deviations of the T, ?
dynamical properties from that of an uncontaminated inter-
face. We shall return to this point at the end of this paper.
The motivation for the weakly nonlinear analysis of this pa-  FIG. 1. Geometrical configuration of the two-layer system.
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In the basic static state of pure conduction, the interface is . 1 5 1 )
flat and located az=0. The temperature at the interface in Vit ROO—5 VY= 5L, V4], (7a)
the basic state is given by

A+ V20—09.0=[y,0], 7b

ATy N d* T, R W0=[,0] (7b)

I @)
A*d+\d

4% * 1 2,1 % 1 * 2,1 %
voV7* +yoRay0 _53tv v :5[1// Vey*], (79

We describe both layers within the Boussinesq approxima-
tion, i.e., all parameters are independent of the temperature, . ) . .
except for the densities and the interface tension. The tem- )\—Of?xlﬂ +roVEO* =0 0" =[*, 0" ], (7d)
perature dependence of the density,
where[.,.] is the Poisson operator, i.d.f,,f5]=0d,f1d,f>
p=0(1=¥(T=To)), @ - dyf,0,f,1. Finally, we rewrite Eqs(7a)—(7d) for state vec-

— * kY
is taken into account only in the gravity term. Usidgas tory=(4,6,¢7,0%) in the form

length scaled?/ k as time scale, andl,— T,) as scale of the (L+RM+4,T)y=N(y,y). (8)
temperature, the basic equations describing the dynamics of
the lower fluid, i.e., the Navier-Stokes equation, the equatioThe structure of linear operatoksM,T and of the nonlinear
of heat conduction and the equation of continuity can beoperatorN can easily be obtained from Eq3.a—(7d).
written in the following dimensionless form:

I1l. BOUNDARY AND INTERFACE CONDITIONS

1
platVv-V)v=—Vr+ ROk +V2v, (3a We use no-slip Eq(9a) as well as stress-free boundary
conditions(9b), together with fixed temperatures at the outer
(0,+V-V)0=v-k+ V20 (3b) boundaries of the double layer, which are located=at-1
‘ ’ andz=d,:
V.v=0, (3¢

dth=dpp=0=0 atz=—1,

wherev is the velocity vectorf andw denote the deviations

of the temperature and of the pressure, respectively, from the
basic static state. Rayleigh numiRand Prandtl numbeP

are defined by

— 2% _ gk _ _
e 7g(T2—To)d3 o K (4) ﬁxlﬂ* —ﬁzlﬂ* =60*=0 at Z—do. (gb)
VK ' K Distortions of the interface from the equilibrium position are
) . , given by F(x,z,t)=z—{(x,t)=0. The substantive deriva-
Using the same scales, the corresponding equations for thRe of F yields the kinematic conditiond,¢= d,i(¢)

df* =" = 0¥ =0 atz=d,, (9a)

dh=02y=0=0 at z=—1,

upper fluid read as follows: +,({) 9, for the material interface. The domain occupied
1 1 by each fluid isa priori unknown and must be determined
(9 VF VIV = — —Va* + ROk + VAV, as part of the solution. While the linear problem with0
P 0 can be solved easilly7], the situation becomes rather diffi-

(53 cult in the nonlinear case. For many combinations of immis-
cible fluids, used within laboratory experiments, the interface
(9+V* V)6 =iv* K+ oV 26", (5b) ten_sion_and th(_a deqsity differe_nce between the fluids prevent
No a significant distortion of the interface. Therefore, we will
assume a flat interface between the two liquids. The continu-
V-v*=0. (500 ity of the velocity, the temperature, and the heat transport,
together with/=0, require conditions
For simplicity, we assume that the motion occurs in the form
of two-dimensional rolls. Therefore, we can introduce two  dyi=dyh™
streamfunctionsg/= (x,z) andy™* = * (x,z) in order to ex-
press the velocities as follows: = dgh— 0" = 6= 0" =Nod,0" —3,0=0 atz=0.
(10

V:VXI/IJ':(_(QZIID,O,(E’X(//), . .
While the balance of the normal stresses at the interface does

V=V X ¥ j=(— a4 004 ). (6) not enter the problem in the cage-0, the balance of the
tangential stresses can be written as
By taking the curl of Eqs(3a and(5a and multiplying them 5 ) 5
with j, we obtain the following four equations: I7p—voQodz " =My 0+ NJid,ip. (11)
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Marangoni numbeM and interface viscosity numbé& are  an infinite number of neutral curveFé)”)(a) and dispersion

defined by relationsw{”(a), with ne N. If we heat from below, every
neutral curve is normally characterized by a critical Rayleigh
M — do (T~ To)d N (12  humber R =min RM(a)}=R{(a™)>0, a critical wave
aT gk nd’ numbera(" , and a critical frequency!” = w{"(a!V). We

) ) ) ] number the neutral curves consecutively, such tRSP
where 7; is the interface viscosity3,5,6]. We assume that <R(™D holds forne N. In the following, we will restrict
temperature derivativeo/JT of interfacial tension is con- 4 attention to the first two linear unstable modes, which we
stant. Since both the Rayleigh number and the Marangonjj| denote as theA and B modes, respectively. Of special
number depend on temperature d|_fferen®{T0), ypi-  interest are the critical vaIuesRKl),agl),wgl)) of the A
cally both parameters are varied simultaneously in experiygde of course, since they describe the onset of convection.
ments. Therefore, we use the dimensionless parameter |, the theory of Rayleigh-Beard convection, the neutral

M 1 curves forn>1 are typically of minor interest because the

M __de (13  amplitude of convection becomes quite high = R® .

R T 0,vygd? This is true, e.g., for a single layer with stress-free bound-
. .  aries, whereR{"(a)=(a?+n?%%)%a? holds and where
instead of the Marangoni number. Fet>1 the Marangoni  R(2—16xR(M). In contrast to single-layer convection, the
effect will be dominant, while fofc|<1 the convection will ¢ tral curveR{(a) andRP(a) of double-layer convec-

be driven by buoyancy. tion usually correspond to different types of coupling and
RP—R{Y can become relatively small, depending on the
system parameteld1]. Therefore, the interaction between
The linear stability of the double-layer system has beerfn€A andB modes may become important for the convection
already investigated by numerous auth@ts10. Neverthe- N the weakly nonlinear regime. In particular, this interaction
less, we will make some technical remarks concerning th&an lead to a change of the coupling mechanism, which is

linear problem, since it is equivalent to the first-order prob-connected with a characteristic change of the flow pattern.
lem of the forthcoming nonlinear analysis. The linearizedOUr basic idea is to describe the competition betweenithe

IV. LINEAR ANALYSIS

version of Eq.(8) and B modes with the help of two coupled amplitude equa-
tions, which we will derive in the following section. For
(L+RogM+6;T)yp=0 (14)  these purposes, we introduce the following notation:
can be solved with ansatz ag=al?, R=R§=R{M(a,), R3=RP(ac). (17)

— * * i ax+ ot
Yo(x,2,0) = (u(2), 9(2),u(2), " (2))e + 19 please note that, in gener&ly# R holds.

Therein,a denotes the wave number and- o, —iwq is the

complex growth rate. In general, tlzedepending functions

are complex. Since we are interested in the case of marginal We perform a weakly nonlinear analysis in the neighbor-

stability, i.e., in the neutral curves, we paf=0. Inserting  hood of the onset of convectiom{,R.). For simplicity, we

Eq. (19) into Eq. (14), we find shall restrict the analysis to the case of a monotonous onset
of A andB modes, i.e., we assume’=w?=0. In defin-

U +u"+iaRy®=0, ing a scalar product

V. NONLINEAR ANALYSIS

P P

i(J)O i(.L)O
a’— —) a2u+(——2a2

16 a (0 2mla__
(169 (Y1,Y2) ::;.ﬁlfo 1ydxdz
iau+ (iwg— a?)9+9"=0, (16b)
N afdoJ'ZW/aE*l//*d q
) ) — 1 ¥ 0Xaz
(Voaz— ?0 a®u* + ?0—1/02&2 u*"pou* mJo Jo
@ (0 (2mla_

+ ’)/O| CYR()’&* = 0, (16C) + ;J‘flj‘o 01 ezdxdz
1. . a (do (2mla___
)\—Iau*-l-(lwo—Koaz)ﬁ*+K01‘}*"=0. (160 +—f f 07 65 dxdz (18

0 mJo 0

These equations, together with the six boundary conditionsve indicate the complex conjugate by a bar. Ldt (
of Eq. (9) and the six interface conditiori¢0) and(11), can  +R,M)" be the adjoint operator td_(+ R,M) and lety] be
be solved by the use of a shooting method, as described & solution of

Ref.[7]. The interface conditions provide a set of six linear

homogeneous equations whose solvability condition yields (L+RoM)Tyf=0 (19
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Then, amplitudes of convection can be defined by since its homogeneous part has a nonvanishing solution. It
. can readily be checked that conditio27) is satisfied with
€:=(Yp,Y) (200 R,=0 and solutiory; of Eq. (26) can thus be written in the
f
and the expansion in powers efcan be written in the form orm
1 .
R=Ry+eR;+ €’ Ry+- - -, (219 P1(x,2)= 5([A§ua1(2) +AgBoUapy(2) + Biupy (2) ]2
y=e(Yot ey +€y,t---). (21b)

+[ Aol ?Ua2(2) + AgBoUlana(2) +[Bo| Upa(2)
For time-dependent processes we shall introduce a slow time +ec) 28)
T:=€%t such thats, is replaced bye?dr. Since we fix the =
Marangoni number byl =cR, there is no need to write a 1 A
separate expansion fof. By inserting expansiof21b) into 0.(x,2)= E([Agﬁal(zHAoBoﬁabl(z)JrBgz‘)bl(z)]e'z"x
definition (20) we obtain the set of conditions
2 =y 2

8.y =8on, N=0,1,.... (22) +[Ao|*Va2(2) + AoBo D apa(2) +[Bol “Bpa(2)

Insertion of expression@1g and (21b) into Eq. (8) yields +c.c), (29)

the linear Eq(14) in lowest order. We write the solutions for

) with analogous expressions valid in the upper layer which
the A and B modes in the form

differs only by an asterisk at the-depending functions.
It is evident that the orthogonality conditiori22) is

yg(x,z):%AO(T)([ua(z),ﬁa(z),u’g(z),ﬂg(z)]eiax+c.c.), satisfied. For the determinatioq of the functions
23 Ua1(2),U31(2),Uapa(2), . .. the shooting method has been
(239 employed and value
1 )
b _ a 1
Yo(%,2)= 5Bo(T) ([Up(2), 9p(2),U5 (2), 95 (2) ]+ c.c), Roi=y (R§+RY) (30)

(23b

b
where c.c. indicates the complex conjugate of the first terni@S been used. Because of the closenestjaind Ry, ;[r_\e

in the respective brackets. We have introduced complex anf€sults are changed only negligibly if, for instanBg=Rj is
plitudes A, and B, which may depend on slow time& in assumed. It can easily be demonstrated that functions
addition to their dependence on the external parameters f2:Uaz,Un2,Up, Vanish identically but the same does not
the problem such aR. Wave numberr will usually be fixed ~ hold for up, anduj,,. In ordere®, we obtain equation

at its critical valuea= a,. Sum
(L+RoM)y,=3d7Tyo—R,My o+ N(Yo,Y1) + N(Y1,Yo)
Yo=Yo+Yo (249) (31)

of the two modes is the starting point of the following Which requires the solvability condition

weakly nonlinear analysis. Of course, since Rayleigh num- T ot T

bersR3 and R}, for whichy2 andy} solve the linear equa- Ra(Yo:MY0)=(¥0.91TY0) + (¥o.N(Yo.y1))

tions, are not equal in general, solves the Iine:_;\r problem +(yd N(Y1,Y0))- (32)
only approximately, to the extent that the dlﬁerenﬁé

—R3 is small such that it can be taken into account in theSincey3" as well asys’ can be used in place of), two
higher order of the problem. Since the conditi@®8) do not  coupled nonlinear amplitude equations are obtained. By di-

fix the amplitude ofy,, we use the normalization agonalizing the contributions from thHEBoperator term, the
two equations can be written as differential equations
fo u |2dz+fd0|u*|2dz= fo |up|2dz+ fd0|u*|2dz=1 dAgldT= ... anddBy/dT= .... Inorder to gain a direct
1 o ° 4P o P ' connection with the original Eq$8), we now eliminates by
(250  writing
In ord.ere2 of Eq. (8), we obtain the linear inhomogeneous _R-Ry ,d d
equation A:=eA,, B:=eBy, R,= 2 S
(L+RogM)y;=—R;Myy+N(yg,Y0) (26) o ) )
oMM o Yo-Yo whereby, we neglect contributions of higher ordereinWe
which requires the solvability condition thus obtain the final form of the amplitude equations
(y§ N(Yo.Y0)) - A= (ayr o+ ayr,) A+ (agr ;+ayr,)B+asA|A|?+agB|A|?
= B B
(Yo.Myo) +a;B2A+agAZB+agA|B|2+a,B|B|2, (333
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3B=(byr o+ b,orp) A+ (bar,+byry,)B+bsA|A|2+ bgB|A|? 2000
+b;B2A+bgA?B+byA|B|2+ b, B|B|?, (33b)
where definitions ,:=(R—R{) andr,:=(R— RB) have been 1500 X
used. All coefficients in Eq433) are real. R .
VI. RESULTS 1000 - \\ T
Since it is not feasible to investigate the entire parameter \\;;f////
space with the system of amplitude E@33), we shall re-
strict the attention to a few typical special cases including the 500 p 3 4
case of an experimerif7]. In the following examplesv o
=N=0 is assumed. Since a supercritical bifurcation ofahe . o
mode atR=R. was always found, the properties of tie FIG. 2. Neutral curves for viscoussolid lineg and thermal
C [l

mode will persist for a certain interv@®—R,>0. We are (dashed lines coupling in casedo=ko=Ao=@0=170=Y0=1.
b N hick (thin) lines correspond to rigidstress-fregboundaries.

interested in the case when the interaction between the twh
fluid layers changes discontinuously through the nonlinear . .
coupling with theB mode. In the following, we analyze such Is:pacg. BUtIA and B tr::odes St'"t. rese;ntt;]Ie Ehe |:jeal cadse Oft
a situation for stress-free as well as for rigid boundariesb'g' ast ondg_ﬁas teTp;:;per |§s ot the two ?yefrs 0 no
When the Rayleigh numbers in the two layers are approxiccome 100 I'I erent. f.mg,f 'f,,a_noexa;ngf ﬁﬂr_p(;”e
mately equal R~R*), buoyancy-driven convection will oc- VISCOUS coupling since we find™=u® "=t andv=v= =

cur in both the layers foR>R;. In this case we can distin- for the A ”?Ode atz=0,. S0 tha’g the interface becomes a
stress-free isotherm. This result is independent of wave num-

: é)era and therefore, the neutral curi®§(«) for the A mode

sense of circulation in the layers. Accordingly, the tangential? the case of rigid boundaries corresponds to the neutral
velocity on both sides of the interface has the same sign an¢hifVe in a Rayleigh-Beard layer with one rigid and one
the stronger circulation may support the weaker one on th&réss-free boundary. We thus haRg=Ry=1101 with a
other side. In the special case when no stress is exerted from2-682. This result is well knowiPellew and Southwell,
one layer onto the other, stress-free conditions are obtaine®ef. [12]) and has been confirmed by Rasenat, Busse, and
Because of the opposite sense of circulation, the temperatuftehberg[7]. The B mode is an example for pure thermal
perturbation also has the opposite sign in both the layers ifoupling sinceu’=u*’=0 and 9'=9*"=0 holds atz

the case of viscous coupling. In the case of thermal coupling= 0. SO that the interface becomes rigicnishing velocity

the temperature perturbation has the same sign and it is th@d thermally insulating. Therefore, the neutral curve for the
less constrained. The corresponding buoyancy force driveB mode in the case of rigid boundaries corresponds to the
convection with the same sense of circulation in both theheutral curve of a Rayleigh-Berd layer with a rigid and
layers. When the viscosities of the two layers are of the samthermally insulating boundary on one side and a rigid, iso-
order, viscous coupling is preferred at the onset of convecthermal boundary on the other side. We fiR§i= 1299 in this
tion. Otherwise, the effects of heat conduction lead to thercase fora=2.682. Similarly, the neutral curve for stress-free
mal coupling. It is possible for the system to oscillate be-boundaries can be obtained readilR.=R§=277%4
tween viscous and thermal coupling. This type of time-=657.5 witha.= /2 for the A mode and?8:816.7 for

dependent convection is called oscillatory coupliid the B mode. The bifurcation diagram obtained from ampli-
A. Case 1:d0=K0=}\0=QO= 1]0=’)/0=1 1.5 T
In this case the material properties of both the layers are 10F e
the same and the linear analysis can be carried out d&sily / \\ 7/ N\
The neutral curves for viscous and thermal coupling are 051/ \ / \ ]
shown in Fig. 2 for rigid as well as for stress-free boundaries. ud oo Ke T it
The corresponding functionsi(z),9(z) for stress-free [\ 77
boundaries are displayed in Fig. 3. Since all quantities plot- -05 1
ted are dimensionless, no units are needed. This is true for all
figures in this article. Both thé as well as theB mode -tor |
satisfy the six boundary condition®a) and (9b), respec- 15 ‘ .
tively, and the six interface conditio40) and(11). The A -0 -05 0.0 05 1.0
mode exhibits antisymmetric functiongz),9(z) with re- z
spect toz=0, while these functions are symmetric for tBe FIG. 3. Functionsu(z) (solid) and 9(z) (dashedl for the A

mode. This clear distinction by symmettgnd orthogonal- (thick) and B modes(thin) in casedy=ko=Ao=€0= 7o=y0=1,
ity) betweenA andB modes disappears as one moves awaywith stress-free  boundaries corresponding ta.=2.221R3
from point dy=kg=N\o= Qo= 7= Yo=1 in the parameter =657.5R5=816.7.
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5 4000 T T —
4l i
3000 ." 7
| |
1AL, 1Bl R 2000 P
2 [~ /l"
1r 1000 ;_*_ et S — |
0 0 1 1 1
600 0.0 0.5 1.0 1.5 2.0
R P

FIG. 4. Bifurcations in the case of stress-free boundary condi- F|G. 6. The Rayleigh number at which te mode becomes
unstable as function of the Prandtl number ty=xy=\g=09
=n0=7Yo=1 with rigid (solid line) or stress-free(dashed ling
tude Eqgs.(33a and (33b) in the case of stress-free bound- boundaries. The thin lines indicate the corresponding valu5of
aries withP=1 is shown in Fig. 4. In our bifurcation dia-

grams, thick lines correspond 4|, thin lines correspond to  except foru(z) close to the boundaries. However, the tran-
traveling waves, and lines of medium thickness correspondition from viscous to thermal coupling no longer occurs for
to |B|. Solid lines indicate stable solutions while dashedP=1. Since the Prandtl number enters only the nonlinear
lines indicate unstable solutions. A single branch of statepart of the problem and since it measures the ratio between
containing bothA and B components is represented by two the strength of viscous and thermal diffusion, a lowering of
curves, one for each component. R&=808.2 a bifurcation the Prandtl number is likely to promote thermal coupling.
occurs in which a traveling wave brantwo thin lines, one  This expectation is indeed fulfilled, as shown in Fig. 6. Ray-
for |A| and one foiB|) emerges from thé mode. The latter leigh numbeiR?, at which theA mode becomes unstable has
becomes unstable while the property of stability is taken ovepeen plotted here as a function of the Prandtl number. There
by the traveling waves. The frequency of the traveling wavesxists an upper limit oP for which a finite value oR? can
increases from zero at the bifurcation point and decreas§ss optained. This upper limiP? assumes valu®?=1.660
back to zero as the tr.avellng wave solutl_on meets the B modg, . <tress-free boundaries while for no-slip boundarfe,

n a second bifurcation ak=988.7. While the two layers =0.823 is found. From the value &3, also shown in the
convect with viscous coupling at low supercritical Raylelghf. infer that fd? = 0.3 anproximately the same
numbers, the traveling waves provide a transition from vis-t;%ure’ one ((:jgﬂ nter . ' ppb btai yd for riaid
cous to thermal coupling, represented by the st&taode ffurcation diagram as F!g. 4 can be obtained for roid.

" ; X . _boundaries, as was obtained for stress-free boundaries in

for R>988.7. In addition, there is a mixed mode solution caseP—1

which bifurcates aR=R,,=869.6 from theB mode. The '

heat transport carried by the various types of convection is

plotted in Fig. 5, which demonstrates that the solution with B. Case 2:dp=00=70=1, 70=25, ko=A=0.2

the maximum Nusselt number is not always the stable solu- We now consider a case characterized by thermal cou-
tion. pling at the onset of convection. The neutral curves forAhe
When no-slip, instead of stress-free, boundaries are useds well as thd3 mode are identical with those in case 1. This

the forms of theA and theB modes are changed very little, is true for rigid as well as for stress-free boundaries. Accord-
ingly, the Rayleigh numbers in both layers are equal, Re.,

=R*, and the values ofi,, R2, andR5 are the same as in
case 1. This property is not quite obvious and is stated here
as an empirical fact. It will be the subject of a proof given in
50 | a future paper. We first analyze the case of rigid boundaries.
Since the upper layer has a much higher viscosity and a
lower heat conductivity than the lower layer, the velocity
field is much stronger in the lower layer while the tempera-
ture perturbation is amplified in the upper layer, as can be
seen from Fig. 7. BottA and B modes represent thermal
coupling since viscous coupling is minimized owing to the
high viscosity rationy=25. In fact, the lower boundary of

tions. Diagram fordy= kg=N\y= Q0= 7o=Yo=1.

25 T

Nu

600 800 1000 1200 the upper layer acts essentially like a stress-free interface,
R while the high temperature gradient caused in the upper layer

FIG. 5. Nusselt numbers as function of the Rayleigh number fody the small value 0.2 ok, and\ exerts a strong influence
on the lower layer. The latter effect would disappear #gr

the bifurcating solutions in cas®=dy=ky=No=00= 7= Yo
=1 with stress-free boundary conditions. =N\g=1 in which caseR* <R is obtained with viscous cou-

1.0
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0.0 - \ A 12 ¢ .
-05 ‘ ' —
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1.0 ! ‘
1000 1200 1400 1600 1800
R
FIG. 7. Functionsu(z) (solid) and 9(z) (dashedl for the A
(thickk and B (thin) modes in caseP=dy=90¢=vo=1,7¢
=25, kg=\=0.2 with no-slip boundaries corresponding 4Q
=2.682,R3=1101, andR}=1299.

FIG. 9. Nusselt numbers as function of the Rayleigh number for
the bifurcating solutions in case=d,=0q9=7y,=1, 1n,=25, and
Kko=MA\o= 0.2 with no-slip boundary conditions.

pling as a consequence. Similarlyy=1 with ko,=Xy=0.2  X20x 12 mn? and 140<8x 12 mn? have been used with
would lead toR* >R with viscous coupling at the onset of copper plates as boundaries at top and bottom and glass
convection. TheA solution, bifurcating at the onset of con- plates as vertical boundaries. Convection rolls tend to orient
vection, is of mixed type, with the amplitude of themode  themselves with the axis perpendicular to the long side of the
always far exceeding that of tH& mode, i.e.,|A|>|B|>0.  channel. In the case of the 20-mm wide channel the critical
Therefore we have multiplied the amplitude of tBemode  Rayleigh number for onset of convection does not differ
by factor 10 in Fig. 8. While thé solution is always stable much from the value for an infinitely extended layer, but in
the B solution bifurcating aR= RB is always unstable, which the case of the 8-mm wide channel the critical Rayleigh
is understandable on the basis of its much lower Nusseliumber is increased significantly. Among the various combi-
number, as shown in Fig. 9. These properties are not affecteshtions of liquids used by Rasenat, Busse, and Rehlyérg
by the onset, aR=R,,=1455, of two other solutions of we shall consider here only the system ethylene glycol oil.
mixed type through a saddle node bifurcation. Since thes@ccording to the data given in R€f7] we find the following
solutions are also unstable they are not of physical interestalues for the parameters of our thedeghylene glycol rep-
Because of the weak mechanical coupling no significantesents the lower fluid laygr

changes can be expected for increasing Rayleigh number R*

within the realm of the amplitude equation description. This P=187, P*=286, R 1.886, dy=1.0,
property persists when the rigid boundaries are replaced by

stress-free boundaries. The effect of the thermal coupling is ko=0.966,

s0 strong that a change of the conditions at the outer bound- ) _ g6 o —0811, 7,=1.196, w,=1.475,
aries will not affect the dynamics of the system in any quali-
tative way. Y0=1.613.

No data are available for the interfacial tension and its tem-
perature dependence. For simplicity we start with assump-
We now consider an experiment performed by Rasenation c=0. Because oR* =1.886R convection is first seen
Busse, and Rehbelg]. Two channels with dimensions 90 n the upper layer. The neutral curves fomndB modes are
shown in Fig. 10. According to Fig. 11 tilemode 8 mode

C. Case 3: Ethylene glycol-oil system, no-slip boundaries

the wider channel. Convection can first be observed in the
. lower layer atAT=2.7+0.2 K at which point thermal cou-
——————————— pling is found. In the narrow channel a transition from vis-
""" ] cous couplinglat AT=4.1 K) to thermal couplindfor AT
=5.3 K) could actually be observed, connected with a
change to a larger wavelengtfiom 13.2 mm to 14.5 mm
The latter value agrees quite well with minimum wave num-
FIG. 8. Bifurcations in the case of no-slip boundary conditions.ber ag=2.577 (corresponding to.2=14.6 mm) of the neu-
Diagram forP=dy=00=y9=1, 79=25, andky=\y=0.2. tral curve for theB mode. Since an increase of the wave-

* | | | corresponds more or less to viscottherma) coupling.

I | Critical wave number ise.=2.673, corresponding t&3
sr | | 1 =632.9, whileRS=1199. These values correspondAd,
- ! ! It e =2.207 K andAT§=4.181 K in the experimental configu-

82 I | “"‘;_‘_’-’—""’ L ration. The former value is in good agreement with observed

; i i P onset of convection in the upper layerst ,=2.1+0.2 K in
L |

|

I I

| | .

| -

0 <
1000 1200 1400 1600 1800
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FIG. 12. Bifurcation diagram for the ethylene glycol-oil double

. 10. for the ethyl lycol-oil system with .
FIG. 10. Neutral curves for the ethylene gly il sy wi layer with rigid boundaries.

rigid boundaries. The soliddashed line corresponds to viscous

(therma) coupling. . .
creases while the distance between the neutral curvés of

] ) andC modes(third linearly unstable modelecreases until at
length was also observed in the wide cellAaf~3 K, the  ¢= _ 0517 a new mode with oscillatory coupling replaces
authors of Ref[7] conclude that the transition from viscous ihe B mode as second linearly unstable mode. The nonlinear
to thermal coupling occurs in this case as well, even thougRnalysis based on Eq&3) has been carried out for different
convection in the lower layer was too weak to be observeq g es ofce[—0.517,0.130, but the bifurcation diagrams
for AT<2.7 K. do not show any significantly better agreement with the ex-

In contrast to the linear aspects of the theory, not evelperimental findings, than for cage=0.
qualitative agreement between predictions and observations, gyen when depth ratid, was decreased t,=0.853 in
with respect to nonlinear properties, could be found. Theyder to achieve a state witlR= R*, which is expected to
bifurcation diagram, based on the amplitude E@3) and  t4y0r thermal coupling, no significant change with respect to
shown in Fig. 12, indicates that only themode correspond-  cased,=1 was obtained. It is unlikely that the finite aspect
ing to viscous coupling is stable. A transition from viscous t0aios of the experimental configurations are responsible for
thermal coupling is more likely at lower Prandtl numbers.ihe discrepancy, especially since the linear theory agrees
But in the present case with=0, this transition occurs only  guite well with the observations of convection in the wider
for P<P{'=0.624. Another attempt to resolve the discrep-channel. The additional viscous dissipation induced by the
ancy through consideration of case$ 0 has also not been sjdewall is likely to increase rather than decrease the effec-
successful either. Clearly, the Marangoni number does nave Prandtl number. We are thus led to consider other physi-
vanish in the experiment as assumed so farcAscreases cal effects not usually taken into account in theoretical treat-
from zero the neutral curves & and B modes approach ments of the double-layer convection problem. The foremost
each other, as shown in Fig. 13, such thatat0.130 con-  candidate for such an effect is impurities on the interface,
vection sets in with oscillatory couplin@®C). This property  which are known to exert a strong influence on the dynami-
is due to the fact that the interfacial tension and motion at thea| properties of the interfad@,5,6.
interface have the same direction in the case oftmeode, In order to study the influence of the interface viscosity
but are opposite for th& mode. In the case of negaticehe  numberN, bifurcation diagrams have been calculated for dif-
distance between the neutral curvesfofind B modes in- ferent values of\. As N is increased from zero, th&® mode
changes its coupling property continuously from viscous

2.0 T
8000 T T T
—— A-mode
15 ¢ //-\ b B-mode
/ \ 6000 - C-mode i

10 | \ < T e
u, ¥ \
05 | - R. 4000

0.0 o= - \\_; —————————— 2000
-0.5 . :
~1.0 -0.5 0.0 0.5 1.0 0 , ) ‘ ,
z -08 -06 -04 -02 00 02 04
FIG. 11. Functionsu(z) (solid and 9(z) (dashed of the A e

(thick) and B (thin) modes for the ethylene glycol-oil double layer FIG. 13. R, of the first three linearly unstable modes as function
with rigid boundaries corresponding ta.=2.673,R§=632.9, and  of parameterc for the ethylene glycol-oil double layer with rigid
Rb=1199. boundary conditions.

016305-8



THEORETICAL STUDY OF FLOW COUPLING. .. PHYSICAL REVIEW B8, 016305 (2003

2.0 T 4

15

A\
b /N |
u, ¥

|Al, 1Bl 2 |
05 - \ ________ .
,,//"/”»\\\‘ ~'i ) 1+
0.0 —
e
\\ -
-0.5 w ! 0 . !
-1.0 -0.5 0.0 0.5 1.0 500 1000 1500 2000 2500
z R

FIG. 14. The functionsi(z) (solid) and 3(z) (dashed of the A FIG. 15. Bifurcation diagram for the ethylene glycol-oil double
(thick) and B (thin) modes for the ethylene glycol-oil double layer |ayer with N=10 and rigid boundaries.
with N=10 and rigid boundaries correspondingdg=2.746, R}
=778.5, andRi=1427. most likely that convection in the two layers was thermally
coupled already at onset, as is suggested by the effects of an
coupling towards thermal coupling. TtBemode exhibits the interface viscosity and by the absence of any noticeable mo-
opposite behavior in that it changes from thermal to viscousion in the lower layer forAT<2.7 K. The concept of the
coupling. Already atN=2 temperature functiod(z) of the interface viscosity may not be the most physically realistic
A mode no longer changes sign throughout the double layasne. But other more realistic descriptions of the effects of
—1<z<1, as is characteristic for thermal coupling, al- impurities are likely to lead to similar results.
though the velocity field still retains some resemblance with
viscous coupling through the opposite sense of circulation on
both side of the interface. Atl=5 this feature has also dis-
appeared and th& mode is thermally coupled entirely, while
the B mode is completely viscously coupled. The mix&d
solution which forN= 2 still represents the only stable solu-
tion, becomes unstable beyom>2.72RS when N is in-

creased to 5. In Fig. 14 functiongz) and 9(z) are shown

VIl. CONCLUDING REMARKS

Double-layer convection offers a large variety of sce-
narios for the nonlinear dynamics of coupled systems, which
have only partly been explored in this paper. A major diffi-
culty for the quantitative comparisons between theoretical
predictions and experimental measurements is the role
. ] layed by processes at the interface between the fluids. A
for A and B TOdeS for caseN=10. At this point Ry get};iled gxgloration of the dynamical effects of impurities at
=778.5 andR,=1427 are found, corresponding @.  ihe interface is desirable. The quantitative measurements of
=2.746. As is evident from the bifurcation diagram shownine changes induced by the intentional introduction of impu-
in Fig. 15, theA mode now again is the only stable mode. jities at the interface could be helpful in this respect. The
This property does not change with a further increas&l,of gnalysis of this paper has been focused on the case where
not even in the limit casél=c, which corresponds to con- convection rolls assume the same wavelength in both layers.
dition v =0 at the interface and which, thus, can be investi-But interesting interaction can also be expected when the
gated easily. heights of the layers differ significantly such that wavelength

The results obtained for finite values Nfare in qualita- ratios of 1:2 or others can be expected. The 1:2 resonance
tive agreement with the observations of Rasenat, Busse, arths been considered by Proctor and Jdié&$ and experi-
Rehberg 7] except at smalN and for an interval aroundl mental realizations of such a system will be of much interest.
=5. We thus conclude that a transition from viscous to therSimilarly, the exploration of the nonlinear properties of os-
mal coupling did not occur in the wide channel experimentcillatory types of double-layer convection deserves more at-
of Rasenat, Busse, and Rehbgrd Instead, it appears to be tention than could be given in the present paper.
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